2nd semester syllabus for Electronics and communication Engineering


HS 9161 TECHNICAL ENGLISH II L T P C
(For all branches of B.E. / B.Tech. Programmes) 2 0 2 3

AIM:

To help students specialising in the field of Engineering and Technology develop their
proficiency in oral and written communication in Technical English.
OBJECTIVES:
  •  To enable students develop their critical thinking skills.
  •  To enable students develop higher order reading skills such as interpreting,evaluating and analysing.
  •  To enable students develop their active listening skills.
  •  To enable students participate successfully in Group Discussions.

UNIT I 6
Word formation using prefixes ‘self’ – modified cloze – contextual meanings -
Sequencing words - future simple passive form - Predicting content – Intensive reading –
interpreting advertisements – Listening and completing table – Writing extended
definition – describing a process using sequence words – developing ideas into
paragraphs – writing about the future.

UNIT II 6
Identifying objects and their use – word puzzles using words with suffixes – Prepositions
– adverbs – structures that express purpose - adjectives – group discussion – Reading -
skimming for content and analysis of style – modes of non verbal communication –
Listening and categorising data in tables – Writing formal letter – writing paragraphs on
various issues.

UNIT III 6
Stress and intonation - Cause and effect expressions - Tense forms - simple past and
past continuous - Different grammatical forms of the same word - Critical reading -
guided note-making and evaluating content - Listening – guided note-taking –
completing a table – Role-play – group discussion techniques - discussing an issue –
offering suggestions – Sequencing jumbled sentences using coherence markers–
Writing a report – Writing recommendations – Writing a letter of complaint.

UNIT IV 6
Numerical adjectives - Prepositions – use of intensifying prefixes – phrasal verbs -
different grammatical forms of the same words – cloze exercise - Reading a text and
evaluating the content - advertisements – analysing style and language - Listening and
entering classified information – Intensive listening and completing the steps of a
process - Role-play - Group discussion expressing opinions and convincing (agreeing
and disagreeing) - Giving oral instructions – Descriptive writing - writing based on hints
– writing argumentative paragraphs – formal letter writing – letter of application with
biodata / CV Writing safety instructions - warnings and notices – preparing checklist –
email communication.

UNIT V 6
Identifying problems, their causes and finding solutions using case studies – creative
and critical thinking – levels of thinking – thinking strategies – brainstorming - analytical
reasoning skills – evaluative essay – decision making – conflict resolution

English Language Lab (30 Periods)
1. Listening: (10)

Recognising English sounds – accents - listening & answering questions - gap filling -
listening & note making - listening to telephonic conversations - listening to speeches.

2. Speaking: (10)
Pronouncing words & sentences correctly - word stress - conversation practice.
3. Reading: (5)
Cloze test - Reading and answering questions - sequencing of sentences.
4. Writing: (5)
Correction of errors - Blogging.
TOTAL : 60 PERIODS
TEXTBOOK
1. Department of Humanities & Social Sciences, Anna University. English for Engineers
and Technologists, Combined edition Vols. I & II. Chennai: Orient Longman, Pvt. Ltd.
2006, Themes 5 to 8 (for Units 1 – 4)
2. Sunita Mishra & C. Muralikrishna, Communication Skills for Engineers, Pearson
Education, Second Impression, 2007. ( for Unit 5)

REFERENCES
1. Ashraf, R.M, Effective Technical Communication, New Delhi: Tata McGraw Hill,
2007.
2. Thorpe, E & Thorpe, S, Objective English, New Delhi : Pearson Education, 2007.
3. Joan Van, Emden, A Handbook of writing for Engineers, Cambridge University
Press, 1997
4. Website: www.englishclub.com

LAB REQUIREMENTS
1. Teacher – Console and systems for students
2. English Language Lab Software
3. Tape Recorders

MA 9161 MATHEMATICS - II L T P C
(Common to all branches of B.E. / B.Tech Programmes) 3 1 0 4


AIM:

To introduce the effective mathematical tools needed for solving engineering problems
and to emphasize the underlying mathematical principles in specific situations
confronting practicing engineers.
OBJECTIVES:
  •  To make the student acquire sound knowledge of techniques in solving ordinarydifferential equations that model engineering problems
  •  To acquaint the student with the concepts of vector calculus, needed forproblems in all engineering disciplines
  •  To develop an understanding of the standard techniques of complex variable theory so as to enable the student to apply them with confidence, in application areas such as heat conduction, elasticity, fluid dynamics and flow the of electriccurrent
  •  To make the student appreciate the purpose of using transforms to create a new domain in which it is easier to handle the problem that is being investigated

UNIT I DIFFERENTIAL EQUATIONS 9+3
Method of variation of parameters – Method of undetermined coefficients – Homogenous
equation of Euler’s and Legendre’s type – System of Simultaneous linear differential
equations with constant coefficients.

UNIT II VECTOR CALCULUS 9+3
Gradient and directional derivative – Divergence and Curl – Irrotational and Solenoidal
vector fields – Line integral over a plane curve – Surface Integral and Volume Integral -
Green’s, Gauss divergence and Stoke’s theorems – Verification and Application in
evaluating line, surface and volume integrals.

UNIT III ANALYTIC FUNCTION 9+3
Analytic functions – Necessary and sufficient conditions for analyticity - Properties –
Harmonic conjugates – Construction of analytic function - Conformal Mapping – Mapping
by functions , , , w z c az z
z - Bilinear transformation.

UNIT IV COMPLEX INTEGRATION 9+3
Line Integral - Cauchy’s theorem and integral formula – Taylor’s and Laurent’s Series –
Singularities – Residues – Residue theorem – Application of Residue theorem for
evaluation of real integrals – Use of circular contour and semicircular contour with no
pole on real axis.

UNIT V LAPLACE TRANSFORMS 9+3
Existence conditions – Transforms of elementary functions – Basic properties –
Transforms of derivatives and integrals – Initial and Final value theorems – Inverse 18
transforms – Convolution theorem – Transform of periodic functions – Application to
solution of linear ordinary differential equations with constant coefficients.

L: 45, T: 15, TOTAL : 60 PERIODS

TEXT BOOKS
1. Grewal, B.S. “Higher Engineering Mathematics”, Khanna Publications (2007)
2. Ramana, B.V. “Higher Engineering Mathematics” Tata McGraw Hill (2007).

REFERENCES
1. Glyn James, “Advanced Modern Engineering Mathematics, Pearson Education
(2007)
2. Jain R.K. and Iyengar S.R.K., Advanced Engineering Mathematics (3rdEdition)
Narosa Publications, Delhi (2007).

PH9168 PHYSICS FOR COMMUNICATION ENGINEERING
(Common to Electronics and Communication Engg., Computer Science and Engg.
and Information Technology)
L T P C
3 0 0 3
OBJECTIVE:
To introduce the essential principles of physics for communication and related
engineering applications.

UNIT I ELECTRICAL PROPERTIES OF METALS 9
Classical theory: Drude model - thermal conductivity, thermal resistance - electrical
conductivity of nonmetals: semiconductors, ionic crystals and glasses - thin metal films:
conductivity and resistivity - Schr̦dinger wave equation Рparticle in a box Рdegenerate
states – Fermi-Dirac statistics – density of states: electron concentration and Fermi
Level - band theory of solids: energy band formation – electron effective mass.

UNIT II SEMICONDUCTORS 9
Intrinsic semiconductors: energy band-diagram - direct and indirect band gap
semiconductors - carrier concentrations and conductivity - extrinsic semiconductors: n,
p-type doping, compensation doping - temperature dependence of conductivity -
degenerate and nondegenerate semiconductors - recombination and minority carrier
injection: direct and indirect recombination - minority carrier lifetime - diffusion and
conduction equations and random motion - continuity equation: time-dependent
continuity equation, steady-state continuity equation - optical absorption - Hall effect and
devices - Ohmic contacts - Schottky diode and solar cell.

UNIT III DISPLAY DEVICES 9
Photoluminescence, cathodoluminescence, electroluminescence, injection luminescence
– plasma displays - LED construction and working – organic LEDs – principles of 19
quantum well laser – liquid crystals and LCD construction and working – numeric
displays

UNIT IV MAGNETIC/OPTICAL DATA STORAGE TECHNIQUES 9
Introduction – magnetic material parameters – magnetic disk memories – optical data
storage – phase change recording – magneto-optical data storage – Hi-tech involved in
system development – capacity of CD in normal use – advantages of CD – holographic
storage – construction of a hologram – reconstruction of a hologram – photorefractive
storage.

UNIT V FABRICATION PROCESS USING SEMICONDUCTORS AND
DIELECTRIC 9
Bulk crystal growth, Epitaxial growth, masking and etching, Diffusion of impurities,
selective diffusion, Formation of PN junction, resistors, capacitors, inductors, Isolation
methods, metal semiconductor contact. Introduction to integrated circuit – Definition of
LSI, MSI, VLSI circuits monolithic and hybrid circuits, Thin film and thick film technology.

TOTAL : 45 PERIODS

TEXT BOOKS
1. Palanisamy, P.K., Materials Science for Electronics Engineers, SCITECH, 2005.
2. Arumugam, M., Materials Science, Anirutha Publ., 2002.

REFERENCES
1. Jasprit Singh, Optoelectronics: An introduction to Materials and Devices, McGraw
Hill, 1998.
2. Wilson, J and Hawkes, J.F.B, Optoelectronics, Printice Hall, 2002
3. Bhattacharya, B., Semiconductor optoelectronic devices, Printice Hall of India, 1995.
4. Kittel, C., Introduction to Solid State Physics, John Wiley, 1996
5. Kasap, S.O. Principles of Electronic Materials and Devices, Tata McGraw-Hill, 2007.


GE9261 ENVIRONMENTAL SCIENCE AND ENGINEERING L T P C
(Common to all branches) 3 0 0 3


AIM
To create awareness in every engineering graduate about the importance of
environment, the effect of technology on the environment and ecological balance and
make them sensitive to the environment problems in every professional endeavour that
they participates.
OBJECTIVE
At the end of this course the student is expected to understand what constitutes the
environment, what are precious resources in the environment, how to conserve these
resources, what is the role of a human being in maintaining a clean environment and useful environment for the future generations and how to maintain ecological balance
and preserve bio-diversity. The role of government and non-government organization in
environment managements.

UNIT I ENVIRONMENT, ECOSYSTEMS AND BIODIVERSITY 14
Definition, scope and importance of environment – need for public awareness - concept
of an ecosystem – structure and function of an ecosystem – producers, consumers and
decomposers – energy flow in the ecosystem – ecological succession – food chains,
food webs and ecological pyramids – Introduction, types, characteristic features,
structure and function of the (a) forest ecosystem (b) grassland ecosystem (c) desert
ecosystem (d) aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries) –
Introduction to biodiversity definition: genetic, species and ecosystem diversity –
biogeographical classification of India – value of biodiversity: consumptive use,
productive use, social, ethical, aesthetic and option values – Biodiversity at global,
national and local levels – India as a mega-diversity nation – hot-spots of biodiversity –
threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts –
endangered and endemic species of India – conservation of biodiversity: In-situ and exsitu conservation of biodiversity.
Field study of common plants, insects, birds
Field study of simple ecosystems – pond, river, hill slopes, etc.

UNIT II ENVIRONMENTAL POLLUTION 8
Definition – causes, effects and control measures of: (a) Air pollution (b) Water pollution
(c) Soil pollution (d) Marine pollution (e) Noise pollution (f) Thermal pollution (g) Nuclear
hazards – soil waste management: causes, effects and control measures of municipal
solid wastes – role of an individual in prevention of pollution – pollution case studies –
disaster management: floods, earthquake, cyclone and landslides.
Field study of local polluted site – Urban / Rural / Industrial / Agricultural.

UNIT III NATURAL RESOURCES 10
Forest resources: Use and over-exploitation, deforestation, case studies- timber
extraction, mining, dams and their effects on forests and tribal people – Water
resources: Use and over-utilization of surface and ground water, floods, drought,
conflicts over water, dams-benefits and problems – Mineral resources: Use and
exploitation, environmental effects of extracting and using mineral resources, case
studies – Food resources: World food problems, changes caused by agriculture and
overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging,
salinity, case studies – Energy resources: Growing energy needs, renewable and non
renewable energy sources, use of alternate energy sources. case studies – Land
resources: Land as a resource, land degradation, man induced landslides, soil erosion
and desertification – role of an individual in conservation of natural resources – Equitable
use of resources for sustainable lifestyles.
Field study of local area to document environmental assets – river / forest / grassland /
hill / mountain.

UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT 7
From unsustainable to sustainable development – urban problems related to energy –
water conservation, rain water harvesting, watershed management – resettlement and
rehabilitation of people; its problems and concerns, case studies – role of nongovernmental organization- environmental ethics: Issues and possible solutions –
climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and
holocaust, case studies. – wasteland reclamation – consumerism and waste products – 21
environment production act – Air (Prevention and Control of Pollution) act – Water
(Prevention and control of Pollution) act – Wildlife protection act – Forest conservation
act – enforcement machinery involved in environmental legislation- central and state
pollution control boards- Public awareness.

UNIT V HUMAN POPULATION AND THE ENVIRONMENT 6
Population growth, variation among nations – population explosion – family welfare
programme – environment and human health – human rights – value education – HIV /
AIDS – women and child welfare – role of information technology in environment and
human health – Case studies.
TOTAL : 45 PERIODS

TEXT BOOKS
1. Gilbert M.Masters, “Introduction to Environmental Engineering and Science”, 2nd edition, Pearson Education (2004).
2. Benny Joseph, “Environmental Science and Engineering”, Tata McGraw-Hill, New
Delhi, (2006).

REFERENCES
1. R.K. Trivedi, “Handbook of Environmental Laws, Rules, Guidelines, Compliances
and Standards”, Vol. I and II, Enviro Media.
2. Cunningham, W.P. Cooper, T.H. Gorhani, “Environmental Encyclopedia”, Jaico
Publ., House, Mumbai, 2001.
3. Dharmendra S. Sengar, “Environmental law”, Prentice hall of India PVT LTD, New
Delhi, 2007.
4. Rajagopalan, R, “Environmental Studies-From Crisis to Cure”, Oxford University
Press (2005).

GE 9151 ENGINEERING MECHANICS
(Common to Civil, Geoinformatics and Agriculture & Irrigation Engineering)
L T P C
3 1 0 4
OBJECTIVE:
At the end of this course the student should be able to understand the vectorial and
scalar representation of forces and moments, static equilibrium of particles and rigid
bodies both in two dimensions and also in three dimensions. Further, the student should
understand the principle of work and energy. The student should be able to comprehend
the effect of friction on equilibrium. The student should be able to understand the laws of
motion, the kinematics of motion and the interrelationship. The student should also be
able to write the dynamic equilibrium equation. All these should be achieved both
conceptually and through solved examples.

UNIT I BASICS & STATICS 12
Introduction - Units and Dimensions - Laws of Mechanics – Lame’s theorem,
Parallelogram and triangular Law of forces – Vectors – Vectorial representation of forces
and moments – Vector operations on forces, dot product and cross product - Coplanar 22
Forces – Resolution and Composition of forces – Equilibrium of a forces – Forces in
space - Equilibrium in space - Equivalent systems of forces – Principle of transmissibility
– Single equivalent force

UNIT II EQUILIBRIUM OF RIGID BODIES 12
Free body diagram – Types of supports and their reactions – requirements of stable
equilibrium – Moments and Couples – Moment of a force about a point and about an
axis – Vectorial representation of moments and couples – Scalar components of a
moment – Varignon’s theorem - Equilibrium of Rigid bodies in two dimensions –
Equilibrium of Rigid bodies in three dimensions – Examples

UNIT III PROPERTIES OF SURFACES AND SOLIDS 12
Determination of Areas and Volumes – First moment of area and the Centroid of
standard sections – T section, I section, Angle section, Hollow section – second and
product moments of plane area – Rectangle, triangle, circle - T section, I section, Angle
section, Hollow section – Parallel axis theorem and perpendicular axis theorem – Polar
moment of inertia – Principal moments of inertia of plane areas – Principal axes of inertia
- Mass moment of inertia – Derivation of mass moment of inertia for rectangular solids,
prism, rods, sphere from first principle – Relation to area moments of inertia.

UNIT IV DYNAMICS OF PARTICLES 12
Displacements, Velocity and acceleration, their relationship – Relative motion –
Curvilinear motion – Newton’s law – Work Energy Equation of particles – Impulse and
Momentum

UNIT V CONTACT FRICTION AND ELEMENTS OF RIGID BODY DYNAMICS 12
Frictional force – Laws of Coloumb friction – simple contact friction – Rolling friction –
Belt friction Translation and Rotation of Rigid Bodies – Velocity and acceleration –
General Plane motion – Impact of elastic bodies
L: 45+T=15 TOTAL : 60 PERIODS

TEXT BOOK
1. Beer,F.P and Johnson Jr. E.R, “Vector Mechanics for Engineers”, Vol. 1 Statics and
Vol. 2 Dynamics, McGraw-Hill International Edition, 2007.
REFERENCES
1. Irving H. Shames, Engineering Mechanics - Statics and Dynamics, IV Edition – PHI /
Pearson Education Asia Pvt. Ltd., 2003
2. Hibbeller, R.C., Engineering Mechanics, Vol. 1 Statics, Vol. 2 Dynamics, Pearson
Education Asia Pvt. Ltd., 2000.
3. Ashok Gupta, Interactive Engineering Mechanics – Statics – A Virtual Tutor
(CDROM), Pearson Education Asia Pvt., Ltd., 2002
4. J.L. Meriam & L.G. Kraige, Engineering Mechanics Vol. I & Vol. II, V edition, John
Wiley & Sons, 2006.
5. P. Boresi & J. Schmidt, Engineering Mechanics Statics & Dynamics, Micro Print Pvt.
Ltec., Chennai, 2004.

EC 9151 ELECTRON DEVICES L T P C
3 0 0 3

UNIT I SEMICONDUCTOR DIODE 9
PN junction, current equations, Diffusion and drift current densities, V-I characteristics,
Forward and Reverse characteristics, Switching Times.

UNIT II BIPOLAR JUNCTION TRANSISTOR 9
NPN –PNP -Junctions-Early effect-Current equations – Input and Output characteristics
of CE,CB CC-Hybrid pi model -h-parameter model ––Eber Moll Model-Power BJT
Gummel poon-model.

UNIT III FIELD EFFECT TRANSISTORS 9
JFETs – Drain and Transfer characteristics,-current equations-pinch off voltage and its
significance MOSFET- characteristic-DMOSFET, EMOSFET-,current equation-modelparameters -, threshold voltage modifications by ion implantation-channel length
modulation.-power MOSFET.

UNIT IV SPECIAL SEMICONDUCTOR DEVICES 9
Metal-Semiconductor Junction- Schottky barrier diode-Zener diode-Varacter diode –
Tunnel diode- Gallium Arsenic device, LASER diode,LDR, and MESFETs

UNIT V POWER DEVICES AND DISPLAY DEVICES 9
UJT,SCR,Diac,Triac,DMOS,VMOS,FINFET,DUALGATE,MOSFET, LED, LCD, Photo
transistor,Opto Coupler,Solar cell, CCD,MULTI EMITTER Transistor.

TOTAL : 45 PERIODS

TEXT BOOKS
1. Donald A Neaman,“Semiconductor Physics and Devices”, Third Edition, Tata Mc
GrawHill Inc. 2007.
2.. Streetman,”Solid State Electronic Devices “-Fifth Edition-Prentice Hall Of India-2004

REFERENCES
1. B.JAYANT BALIGA “Power semiconductor Devices”-THOMPSON-1996
2. H.TAUB DONAL SCHILLING “Digital Integrated Electronics” Mcgrawhill-2006
3. Yang, “Fundamentals of Semiconductor devices”, McGraw Hill International Edition,
1978.

EC 9152 CIRCUIT ANALYSIS L T P C
3 1 0 4

UNIT I DC CIRCUIT ANALYSIS 9
Basic Components and electric Circuits, Charge, current, Voltage and Power, Voltage
and Current Sources, Ohms Laws, Voltage and Current laws, Kirchoff’s Current Law,
Kirchoff’s voltage law, The single Node – Pair Circuit, series and Parallel Connected
Independent Sources, Resistors in Series and Parallel, voltage and current division,
Basic Nodal and Mesh analysis, Nodal analysis, Mesh analysis.

UNIT II NETWORK THEOREM AND DUALITY 8
Useful Circuit Analysis techniques, Linearity and superposition, Thevenin and Norton
Equivalent Circuits, Maximum Power Transfer, Delta-Wye Conversion. Duals, Dual
circuits.

UNIT III SINUSOIDAL STEADY STATE ANALYSIS 10
Sinusoidal Steady – State analysis , Characteristics of Sinusoids, The Complex Forcing
Function, The Phasor, Phasor relationship for R, L, and C, impedance and Admittance,
Nodal and Mesh Analysis, Phasor Diagrams, AC Circuit Power Analysis, Instantaneous
Power, Average Power, apparent Power and Power Factor, Complex Power.

UNIT IV TRANSIENTS AND RESONANCE IN RLC CIRCUITS 9
Basic RL and RC Circuits, The Source- Free RL Circuit, The Source-Free RC Circuit,
The Unit-Step Function, Driven RL Circuits, Driven RC Circuits, RLC Circuits, Frequency
Response, Parallel Resonance, Series Resonance, Quality Factor.

UNIT V COUPLED CIRCUITS AND TOPOLOGY 9
Magnetically Coupled Circuits, mutual Inductance, the Linear Transformer, the Ideal
Transformer, An introduction to Network Topology, Trees and General Nodal analysis,
Links and Loop analysis.

TOTAL : 45 + 15 = 60 PERIODS
TEXT BOOKS
1. William H.Kayt, Jr.Jack E. Kemmerly, Steven M.Durbin, “Engineering Circuit
Analysis”, Sixth Edition, Tata McGraw-Hill Edition, 2006.
2. David A Bell, “Electric Circuits”, PHI,2006

REFERENCES
1. Charles K. Alexander & Mathew N.O.Sadiku, “Fundamentals of Electric Circuits”,
Second Edition, McGraw- Hill 2003.
2. Sudhakar and Shyammohan S. Palli, Tata Mc Graw –Hill, Third Edition, 2007.
3. D.R.Cunningham, J.A.Stuller, “Basic Circuit Analysis”, Jaico Publishing House, 1996.
4. David E.Johnson, Johny R. Johnson, John L.Hilburn, “Electric Circuit Analysis”,
Second Edition, Prentice-Hall international Editions, 1997
5. K.V.V.Murthy, M.S.Kamath, “Basic Circuit Analysis”, Jaico Publishing House, 1999.
6. Norman Balabanian, “Electric Circuits”, International Edition,1994.



GE 9161 UNIX PROGRAMMING LAB L T P C
0 0 4 2
AIM:
The aim is to introduce working in UNIX environment.

OBJECTIVES:
  •  To introduce the basic commands in UNIX.
  •  To teach UNIX shell programming.
  •  To introduce programming in C with UNIX system calls.

1. Basic Unix commands
2. Simple editors for file operations.
3. Filters-Grep, sed, awk
4. Simple shell programming.
5. Shell programming using complex control structures.
6. C Programs using file system related system calls.
7. C Programs using process related system calls.
8. Programs for inter process communication using pipes, FIFOs.
9. Programs using signals.
10. Programs using shared memory.

TOTAL: 60 PERIODS
TEXT BOOK
1. Brain W. Kernighan and Rob Pike, “The programming Environment”, PHI, 2002.
EC 9153 DEVICES AND CIRCUIT ANALYSIS LAB L T P C
0 0 3 2

1. Verification of Kirchoff’s Laws.
2. Verification of Thevenin’s Theorem and Reciprocity Theorem
3. Verification of Super position Theorem and Maximum Power Transfer Theorem
4. Frequency Response of Series and Parallel resonance circuits
5. Transient analysis of RL and RC circuits.
6. Diode and Zener diode characteristics
7. Common Emitter and Common Base input-output characteristics
8. UJT Characteristics
9. FET Characteristics
10. SCR Characteristics

{ 0 comments... read them below or add one }

Post a Comment

Enter your comments here